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PHYSICAL-ACOUSTICAL FILTERING IN A SHELFBREAK ENVIRONMENT:
Ocean Physics as Simulated 2 Years Ago
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30m Temperature: 8 July – 7 August 1996



Importance and Effects of Atmospheric Forcings and Uncertainties
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• Oceanic frontal instabilities from 
sub-mesoscales to mesoscales

• Atmospheric forcing impose 
certain scales on multi-scale 
oceanic frontal instability

• Increased atmos. forcing mixes 
large frontal meander at depth but 
does not lead to much stronger 
surface signal
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Quick-Look evaluations of 50m Temperature: July 26, 1996



50m Temperature: 8 July – 7 August 1996



50m Temperature: July 26, 1996
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ESSE: Uncertainty Predictions and Data Assimilation

1. Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)
2. Measurement: y = H(x) + ε ε ~ N(0, R)

3. Non-lin. Err. Cov. evolution:

4. Error reduction by DA:
QTxxxMxMTxMxMxxdtdP +>−−<+>−−=< )ˆ)(ˆ()(())ˆ()()(ˆ(/

)()()( −−=+ PKHIP where K is the reduced Kalman Gain

• ESSE retains and nonlinearly evolves uncertainties that matter, combining,

i. Proper Orthogonal Decompositions (PODs) or Karhunen-Loeve (KL) expansions

ii. Time-varying basis functions, and,

iii. Multi-scale initialisation and Stochastic ensemble predictions 

to obtain a dynamic low-dimensional representation of the error space.
• Linked to Polynomial chaos, but

with time-varying error KL basis:

P(0)=P0



• Bathymetry

• Boundary conditions

– Surface atmospheric forcing

– Coastal-estuary and open-boundary fluxes

• Initial conditions 

• Ocean physics data

• Model parameters and parameterized processes: sub-grid-scales, 
turbulence closures, un-resolved processes

– e.g. tides and internal tides, internal waves and solitons, microstructure 
and turbulence

• Numerical errors: steep topographies/pressure gradient, non-
convergence

Sources of Uncertainty in Simulations of Ocean Physics





Initial condition uncertainties: Positions and shapes of the 
tilted shelfbreak front

Outcropping of surface front
• Upstream positions relatively certain, 

with sharp ring-front interactions
• Downstream positions very uncertain:

– Notice surface signature of 
advected shelf waters

– SBF meandering and “old” weak 
warm core rings

– Squirts of slope and shelf waters



IC uncertainties: Positions and shapes of the tilted SBF (cont.)



Uncertainties in Multiple Model Parameters:
Example of mixing layer depth (Ekman factor Ek)

• Similar uncertainties and fit for several other parameters
• Need for adaptive modeling (e.g. parameter values that evolve in

time as a function of data)
• One reason: (sub)-mesocale coastal variabilities and atmosphere-

ocean interactions are not stationary at scales of days to a month

day

Distribution of 
mixed layer depth 

misfit based on 
NMFS data

Distribution of 
mixed layer depth 

misfit based on 
Seasoar data

Ek=0.1 Ek=0.06



Stochastic 
Primitive Equation
Model

are here

The diagonal of time-decorrelations:

The diagonal of noise variances are chosen
function of z only,  of amplitude set to:
“ε * geostrophy”



Evolution of Uncertainties:
Predicted Standard Deviation of Temperature Error at 10m



Acoustic Propagation Parameter: HOPS sound-sections at noon time

HOPS sections: 3 km grid (6-10 km scale) Seasoar + moored data (4 km cor. scale)



TL based on HOPS





Coupled Physical-Acoustical Data Assimilation of real TL data:
Eigenmodes of coupled normalized error covariance on Jul 26

Sound-speed
Component

Broadband TL
Component

Mode 1 Mode 2

Shift in frontal shape (meander) and its 
acoustic TL above source and cold channel

Opposition to mode 1 + surface thermocline tilt 
and depth with bottom couling at the source



Coupled Physical-Acoustical Data Assimilation of real TL data
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Comparison of PRIMER ’96 and ASIAEX ’00 Shelfbreak Fronts

PRIMER ASIAEX

Temp. Range of Section 6.5 – 20o 13 – 26o

Salinity Range of 
Section 31.75 – 35.25 PSU 33.875 – 34.675 PSU

Salinity Difference 
across Front ~1.625 PSU ~0.2 PSU

Slope .0020 .0023
Width 5 – 10 km 5 – 20 km
Foot 100m 110m

Notable Strong surface heating Front not always 
present (e.g. 2001)



Ensemble statistics for ASIAEX 2000
30m Salinity; 15 members

Mean Standard Deviation

SkewnessKurtosis



Ensemble statistics for PRIMER 1996
Surface Sound Speed; 80 members



• Achieved 1-month simulation of ocean physics and its uncertainties at accuracy 
useful for acoustic propagation predictions

– Ocean prediction acoustically useful even at times where there is no physical data

– Requires steep topographies and intensive parameter estimation/fit, but is feasible today

• Shelfbreak PRIMER oceanic processes:
– Large meander captured (prior to data assimilation). Arises due to a combination of 

internal ocean instabilities and atmospheric forcing 

– (Sub)-mesoscale eddy field at the front important in summer conditions and similar to 
open ocean eddies 

• Most multiple sources of physical uncertainties accounted and predicted using 
dominant error approach of ESSE: non-stationary error statistics

• Oceans physics/acoustics data assimilation via ESSE: carried-out with real data as a 
single multi-scale joint estimation for the first time, using higher-moments to 
characterize uncertainties

– Corrects too lossy TL at depth (2 db) and two high in surface mixed layer

– Leads to corrections in whole acoustic section within cold channel and to shift in sound-
speed front above the source (slope water meander/eddy) 

CONCLUSIONS



EXTRA VUGRAFS



Temperature along Western Acoustic Track
8 July – 7 August 1996





STOCHASTIC FORCINGS MODEL:
Sub-grid-scales





Averaged wind-stress time-series
















